ESPECIFICACIÓN TÉCNICA OFICIAL

Winfac Office — Registro de Eventos Veri*Factu (Ledger JSONL)

ESQUEMA 1.0 (versión estable)

1. Introducción

El sistema de registro de eventos Veri*Factu de **Winfac Office** garantiza la integridad, trazabilidad e inalterabilidad de todos los eventos relacionados con la generación y gestión de registros de facturación exigidos por el **Real Decreto 1007/2023**, relativo a los Sistemas Informáticos de Facturación (SIF).

Cada evento se almacena en formato **JSON Lines** (**JSONL**), un estándar ampliamente utilizado para auditoría y análisis masivo.

Cada línea representa un evento completo, independiente y encadenado criptográficamente con el anterior mediante **hashes SHA-256**.

Este documento define la **estructura del esquema 1.0**, obligatorio para todas las instalaciones de Winfac Office que operen en modo Veri*Factu.

2. Filosofía del diseño

El ledger cumple los principios esenciales del RD 1007/2023:

Inalterabilidad:

Cada evento incluye un entry_hash que se calcula en función de su contenido y del hash del evento anterior (prev hash).

• Trazabilidad:

Se registran todos los eventos relevantes del ciclo de vida de una factura (generación, cierre, modificación, anulación, transmisión, errores, etc.).

• Integridad técnica:

El fichero anual contiene una cadena hash completa. Modificar o eliminar eventos rompe la cadena.

• Lectura estructurada:

JSONL permite lectura secuencial y análisis eficiente con herramientas estándar.

• Portabilidad:

El fichero puede entregarse directamente a la AEAT sin conversión adicional.

3. Ubicación y estructura de archivos

Carpeta base de logs

```
<carpeta programa>\verifactu logs\
```

Estructura por anualidad

```
verifactu_logs/
L 2025/
verifactu_2025.ledger.jsonl
<otros subficheros futuros>
```

- Cada año tiene su propio ledger.
- No se mezclan anualidades en un único fichero.

Archivo principal

```
verifactu_YYYY.ledger.jsonl
```

- Contiene un evento por línea, en JSON válido.
- El orden es estrictamente cronológico.
- Cada evento incluye entry_hash y prev_hash.

4. Estructura de cada evento (Esquema 1.0)

Cada línea contiene un objeto JSON con esta estructura:

```
"ts": "2025-11-07T18:26:48.001",
"year": 2025,
"user": "UsuarioWindows",
"host": "NombreEquipo",
"app": "Winfac",
"app ver": "v2025.11",
"serie": "A",
"num": "8",
"accion": "MODIFICA",
"motivo": "NUEVOS DATOS",
"outcome": "N/A",
"cadena id": "A-8|2025-10-23|326.00|B25211540",
"hash actual": "9608AD47BA4...",
"hash anterior": "65D905BF1B5...",
"csv": "true",
"resultado aeat": "OK",
"http status": 200,
"exit code": 0,
"prev hash": "E035D714DE0D...",
"log schema ver": "1.0",
"extra": {},
```

```
"entry_hash": "D249486EC4B9FA5F..."
}
```

5. Definición de campos

5.1 Metadatos del sistema

Campo	Tipo	Descripción
ts	string	Fecha/hora local en ISO-8601 con milisegundos.
year	integer	Año natural correspondiente al fichero.
user	string	Usuario Windows que efectuó la acción.
host	string	Nombre del equipo donde se ejecutó Winfac.
app	string	Nombre de la aplicación ("Winfac").
app_ver	string	Versión instalada que generó el evento.

5.2 Identificación de factura

Campo	Tipo De	escripción		
serie	string Serie documental de la factura.			
num	string Número de factura.			
cadena_id	string Cadena base usada para e	l hash Veri*Factu (`SERIE-NUM		
hash_actual	string Hash actual de la factura	según RD 1007/2023.		
hash_anterior string Hash anterior encadenado de factura.				

5.3 Evento funcional

CampoTipoDescripciónacciónAcción realizada (CREAR, MODIFICA, CERRAR, ANULA, GENERA_XML, TRANSMITE, ERROR, etc.)motivostring Mensaje explicativo generado por Winfac.

5.4 Interacción con AEAT

outcome string Resultado genérico de la acción.

Campo	Tipo	Descripción
CSV	string/bool	Indica si se generó CSV o si hubo error al hacerlo.
resultado_aeat	string	Respuesta lógica ("OK", "ERROR", vacío).
http_status	int	Código HTTP de la respuesta AEAT (si aplica).
exit_code	int	Código interno de proceso/subproceso.

5.5 Encadenado criptográfico

Campo Tipo

Descripción

prev_hash string entry_hash del evento anterior en el ledger.
entry_hash string SHA-256 calculado como: SHA256 (prev hash + core json).

5.6 Extensión del esquema

Campo Tipo Descripción

log_schema_ver string Versión del formato del ledger (actual: "1.0").
extra objeto JSON Campo libre para datos adicionales.

6. Encadenado criptográfico (mecanismo)

Cada evento se genera así:

- 1. Se lee el entry hash del evento anterior (prev hash).
- 2. Se construye el objeto JSON sin entry_hash.
- 3. Se calcula:

```
entry hash = SHA256(prev hash + core json)
```

- 4. Se añade el campo entry hash.
- 5. Se escribe la línea completa en el fichero JSONL.

Esto produce una cadena ininterrumpida de hashes.

Cualquier modificación retroactiva invalida todos los hashes siguientes.

7. Ventajas del formato

- ✓ Cumple el RD 1007/2023 (integridad y trazabilidad)
- **✓** No requiere base de datos adicional
- **✓** Exportable tal cual a la AEAT
- ✔ Fácilmente auditable
- **✓** Resistente a manipulaciones
- **✔** Portable entre equipos

8. Ejemplo real de encadenado simplificado

Evento 1

prev_hash = ""entry hash = ABC123...

Evento 2

prev_hash = "ABC123..."entry_hash = F67A09...

Evento 3

prev_hash = "F67A09..."entry hash = D991AA...

Si alguien:

- borra el evento 2 → los hashes 3, 4, 5... dejan de cuadrar
- modifica el importe de una línea → mismo resultado

9. Cumplimiento normativo

El diseño del ledger satisface las áreas críticas de la normativa:

- Registro de eventos del SIF
- Seguridad e integridad
- Trazabilidad
- Garantía de no alteración
- Registro cronológico
- Capacidad de entrega de ficheros

Al ser un formato estructurado y legible por máquina, está alineado con los principios recogidos en el RD 1007/2023.

10. Evolución del esquema

La versión actual es:

```
log schema ver = "1.0"
```

Futuras versiones podrán añadir:

- Campos específicos de transmisión AEAT
- Identificación de terminal o puesto
- Tipos de evento extendidos
- Firma digital del ledger completo
- Segmentación mensual, si se desea

Los leds antiguos se mantienen plenamente compatibles.

11. Conclusión

El formato **Winfac Office Ledger JSONL** — **Esquema 1.0** ofrece:

- robustez criptográfica
- claridad técnica
- cumplimiento con VERI*FACTU
- portabilidad
- longevidad documental
- y una base sólida para futuras mejoras

Se trata de un sistema profesional, auditable y diseñado para integrarse directamente en los procedimientos de control tributario actuales y futuros.